

On the Puzzle 1136

Alessandro Casini

June 2023

Puzzle Q1

The following theorem proves only one implication of the Q1 and shows the general form the various primes must have.

Theorem. Let p be a prime integer. If $G(p) = \sigma(p - 1)$ is prime, then $F(p) = d(p - 1)$ is prime too. Moreover, either $p = F_0 = 3$ or $p = F_{2^n}$, $F(p) = F_n$ and $G(p) = M_{F(p)}$, where F_N and M_N denote Fermat and Mersenne numbers respectively.

Proof. Since $\sigma(n)$ is a multiplicative function, the primality of $G(p)$ forces $n = q^\alpha$ to avoid a trivial factorization, with q prime and $\alpha > 0$. It follows that

$$p = q^\alpha + 1, \quad F(p) = \alpha + 1, \quad G(p) = \frac{q^{F(p)} - 1}{q - 1}$$

Therefore, if $G(p)$ is prime then the exponent $F(p)$ must be prime to avoid trivial divisors. Let's underline that this fact is independent of the primality of p , i.e. $\sigma(N)$ prime $\implies d(N)$ prime for every integer N .

If the condition p and q primes is used, then we must have $\alpha = 2^k$ and $q = 2$, hence p is Fermat prime. Besides, $F(p)$ is prime and

$$F(p) = 2^k + 1$$

so by the same reasoning either $k = 2^n$ or $k = 0$. In the latter case, $p = 3 = F_0$ and $G(p) = 3$, both prime, hence the theorem conditions are satisfied. Alternatively it follows that

$$p = F_{2^n} = 2^{F_n-1} + 1, \quad F(p) = F_n = 2^{2^n} + 1, \quad G(p) = M_{F(p)} = 2p - 3$$

where all three are prime. \square

Puzzle Q2

The first 6 terms of this form are

$$\begin{aligned} p_N &= F_0, F_1, F_2, F_4, F_8, F_{16} \\ F(p_N) &= 2, F_0, F_1, F_2, F_3, F_4 \\ G(p_N) &= M_2, M_3, M_5, M_{17}, M_{257}, M_{65537} \end{aligned}$$

that satisfy $F(p_N) = p_{N-1}$ until $N = 5$, but in that case F_8 and M_{257} are composite. Therefore the formula would still be valid if (F_{16}, F_4, M_{65537}) were all prime, however only F_4 is actually prime. Consequentially, the formula of Q2 is true iff there are no other prime triplet. Let me point out that $p_7 = F_{32}$ is known composite.

Puzzle Q3

$257 = F_3$ doesn't appear because 3 isn't a power of 2, thus $F(p) = 2^3 + 1$ is trivially composite.

Puzzle Q4

As discussed in Q2, that would be $p = F_{16}$, however is not prime.