Problems & Puzzles: Puzzles

 Puzzle 1148 Pyramids of palprimes such that... G.L. Honaker, Jr. sent the sequence a(n): 3, 11, 26, 135, 828, ... corresponding to the largest quantity of rows of the pyramids of step n, starting with 2, where each row contains the smallest palindrome prime corresponding to the pyramid under construction. Examples: n=1 ``` 2 727 37273``` n=2 ` ` 2 30203 133020331 1713302033171 12171330203317121 151217133020331712151 1815121713302033171215181 16181512171330203317121518161 331618151217133020331712151816133 9333161815121713302033171215181613339 11933316181512171330203317121518161333911 `n=3` ` ` 2 1022201 1051022201501 1241051022201501421 1071241051022201501421701 1051071241051022201501421701501 1091051071241051022201501421701501901 1351091051071241051022201501421701501901531 1711351091051071241051022201501421701501901531171 1051711351091051071241051022201501421701501901531171501 1291051711351091051071241051022201501421701501901531171501921 1021291051711351091051071241051022201501421701501901531171501921201 1411021291051711351091051071241051022201501421701501901531171501921201141 1131411021291051711351091051071241051022201501421701501901531171501921201141311 1421131411021291051711351091051071241051022201501421701501901531171501921201141311241 1321421131411021291051711351091051071241051022201501421701501901531171501921201141311241231 3411321421131411021291051711351091051071241051022201501421701501901531171501921201141311241231143 1453411321421131411021291051711351091051071241051022201501421701501901531171501921201141311241231143541 3051453411321421131411021291051711351091051071241051022201501421701501901531171501921201141311241231143541503 1303051453411321421131411021291051711351091051071241051022201501421701501901531171501921201141311241231143541503031 3451303051453411321421131411021291051711351091051071241051022201501421701501901531171501921201141311241231143541503031543 3173451303051453411321421131411021291051711351091051071241051022201501421701501901531171501921201141311241231143541503031543713 7273173451303051453411321421131411021291051711351091051071241051022201501421701501901531171501921201141311241231143541503031543713727 7417273173451303051453411321421131411021291051711351091051071241051022201501421701501901531171501921201141311241231143541503031543713727147 7467417273173451303051453411321421131411021291051711351091051071241051022201501421701501901531171501921201141311241231143541503031543713727147647 7037467417273173451303051453411321421131411021291051711351091051071241051022201501421701501901531171501921201141311241231143541503031543713727147647307 `The last row of n=4 & n=5 can be found here:` `a(4) -> https://t5k.org/curios/page.php?number_id=25033` `a(5) -> https://t5k.org/curios/page.php?number_id=25114` `The authors of each pyramid are: Honaker; Honaker, Honaker & Russo & Resta, Gupta, Gupta.` `a(6) -> unknown as of September 2023` Q) Find a(n) for n=6, 7, ...

 Records   |  Conjectures  |  Problems  |  Puzzles