Problems & Puzzles: Puzzles

Puzzle 1184  Floor[n GoldenRatio] =n+ Floor[n/GoldenRatio] for all n=>1.

Sebastián Martín Ruiz, sent the following puzzle:

Q) Prove that Floor[n GoldenRatio] =n+ Floor[n/GoldenRatio] for all n=>1, or find a counterexample.

Golden Ratio=(1+Sqrt(5))/2


From August 10 to 16m 2024 contributions came from Michael Branicky, Vicente F. Izquierdo, Emmanuel Vantieghem, Adam Stinchcombe

***

Michael wrote:

This is true using the fact that g = 1 + 1/g and the properties of floor, where g is the Golden Ratio.
In particular, floor(n*g) = floor(n*(1 + 1/g)) = floor(n + n/g) = n + floor(n/g). #

***

Vicente wrote

We know that  n * GR = n + n  / GR, That may be the reason for equality.
Also: n * (1-GR) = n + n / (1-GR)

***

Emmanuel wrote:

The assertion is true.
Indeed, if  t =(1+Sqrt[5]) / 2  then we have trivially :
 : t - 1 = 1 / t 
and hence :
   n t = n + n (t - 1) = n + n / t.
Thus :
   Floor[n t] = Floor[n + n / t] = n + Floor[n / t], QED.

 

***

Adam wrote:

Integer sums move in and out of the floor function freely: for every real number x and for every integer n, floor(n+x) = n + floor(x).  The defining property of the golden ratio is   1 +1/phi = phi, so n+n/phi = n*phi and then floor(n*phi) = floor(n+n/phi) = n +floor(n/phi).

***

 

Records   |  Conjectures  |  Problems  |  Puzzles