Problems & Puzzles: Puzzles

          Puzzle 1218 3, 41, 463, ...

Giorgos Kalogeropoulos sent the following nice puzzle:

Primes p = 3,41 and 463 have the following cyclic property:
q=prime(p) and the Largest Prime Factor (LPF) of prime(q)+prime(q+1) is p
For p=3, we have q=prime(p)=prime(3)=5
LPF(prime(q)+prime(q+1)) = LPF(prime(5)+prime(6)) = LPF(11+13) = LPF(24) = LPF(2*2*2*3) = 3 = p
For p=41 we have q=prime(41)=179
LPF(prime(179)+Prime(180)) = LPF(1063+1069) = LPF(2132) = LPF(2*2*13*41) = 41 = p
The same goes for p=463 -> q=3299 -> LPF(30557+30559) = LPF(2*2*3*11*463) = 463 = p
Q. Can you find other primes with the same property or prove they don't exist ?


On May 3, 2025, Oscar Volpatti wrote:

I've checked all primes up to p = prime(10^9) = 22801763489, finding one more solution:
  
n = 222617381,
p = prime(n) = 4724804933,
q = prime(p) = 115412584783,
x = prime(q) = 3203417744519,
y = prime(q+1) = 3203417744629,
z = x+y = 6406835489148,
z = 2^2*3*113*4724804933,
LPF(z) = p.

I've used programs primesieve (for fast sieving) and primecount (for double-checking) by Kim Walisch.

 

***

 

 

Records   |  Conjectures  |  Problems  |  Puzzles